{ "id": "2107.04336", "version": "v1", "published": "2021-07-09T10:08:06.000Z", "updated": "2021-07-09T10:08:06.000Z", "title": "Higher differentiability of solutions for a class of obstacle problems with variable exponents", "authors": [ "Niccolò Foralli", "Giovanni Giliberti" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove a higher differentiability result for the solutions to a class of obstacle problems in the form \\begin{equation*} \\label{obst-def0} \\min\\left\\{\\int_\\Omega F(x,Dw) dx : w\\in \\mathcal{K}_{\\psi}(\\Omega)\\right\\} \\end{equation*} where $\\psi\\in W^{1,p(x)}(\\Omega)$ is a fixed function called obstacle and $\\mathcal{K}_{\\psi}=\\{w \\in W^{1,p(x)}_{0}(\\Omega)+u_0: w \\ge \\psi \\,\\, \\textnormal{a.e. in $\\Omega$}\\}$ is the class of the admissible functions, for a suitable boundary value $ u_0 $. We deal with a convex integrand $F$ which satisfies the $p(x)$-growth conditions \\begin{equation*}\\label{growth}|\\xi|^{p(x)}\\le F(x,\\xi)\\le C(1+|\\xi|^{p(x)}),\\quad p(x)>1 \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2021-07-09T10:08:06.000Z" } ], "analyses": { "keywords": [ "obstacle problems", "variable exponents", "higher differentiability result", "suitable boundary value", "convex integrand" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }