{ "id": "2107.04210", "version": "v1", "published": "2021-07-09T04:58:44.000Z", "updated": "2021-07-09T04:58:44.000Z", "title": "Non-compact Einstein manifolds with symmetry", "authors": [ "Christoph Böhm", "Ramiro A. Lafuente" ], "comment": "57 pages", "categories": [ "math.DG" ], "abstract": "For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group G with compact, smooth orbit space, we show the following rigidity result: The nilradical N of G acts polarly, and the N-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.", "revisions": [ { "version": "v1", "updated": "2021-07-09T04:58:44.000Z" } ], "analyses": { "subjects": [ "53C25", "53C30", "14L24", "57S20" ], "keywords": [ "non-compact einstein manifolds", "negative scalar curvature", "minimal einstein submanifolds", "smooth orbit space", "homogeneous einstein manifold" ], "note": { "typesetting": "TeX", "pages": 57, "language": "en", "license": "arXiv", "status": "editable" } } }