{ "id": "2107.03908", "version": "v1", "published": "2021-07-08T15:39:57.000Z", "updated": "2021-07-08T15:39:57.000Z", "title": "On some Generalized Fermat Equations of the form $x^2+y^{2n} = z^p$", "authors": [ "Philippe Michaud-Rodgers" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "The primary aim of this paper is to study the generalized Fermat equation \\[ x^2+y^{2n} = z^{3p} \\] in coprime integers $x$, $y$, and $z$, where $n \\geq 2$ and $p$ is a fixed prime. Using modularity results over totally real fields and the explicit computation of Hilbert cuspidal eigenforms, we provide a complete resolution of this equation in the case $p=7$, and obtain an asymptotic result for fixed $p$. Additionally, using similar techniques, we solve a second equation, namely $x^{2\\ell}+y^{2m} = z^{17}$, for primes $\\ell,m \\ne 5$.", "revisions": [ { "version": "v1", "updated": "2021-07-08T15:39:57.000Z" } ], "analyses": { "subjects": [ "11D41", "11F80", "11G05", "11F41" ], "keywords": [ "generalized fermat equation", "hilbert cuspidal eigenforms", "complete resolution", "second equation", "similar techniques" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }