{ "id": "2107.03585", "version": "v1", "published": "2021-07-08T03:40:41.000Z", "updated": "2021-07-08T03:40:41.000Z", "title": "Improved bounds for colouring circle graphs", "authors": [ "James Davies" ], "comment": "16 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We prove the first $\\chi$-bounding function for circle graphs that is optimal up to a constant factor. To be more precise, we prove that every circle graph with clique number at most $\\omega$ has chromatic number at most $2\\omega \\log_2 (\\omega) +2\\omega \\log_2(\\log_2 (\\omega)) + 10\\omega$.", "revisions": [ { "version": "v1", "updated": "2021-07-08T03:40:41.000Z" } ], "analyses": { "subjects": [ "05C15", "05C62" ], "keywords": [ "colouring circle graphs", "clique number", "chromatic number", "constant factor" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }