{ "id": "2107.03295", "version": "v1", "published": "2021-07-07T15:29:37.000Z", "updated": "2021-07-07T15:29:37.000Z", "title": "Rigidity of joinings for time-changes of unipotent flows on quotients of Lorentz groups", "authors": [ "Siyuan Tang" ], "categories": [ "math.DS" ], "abstract": "Let $u_{X}^{t}$ be a unipotent flow on $X=SO(n,1)/\\Gamma$, $u_{Y}^{t}$ be a unipotent flow on $Y=G/\\Gamma^{\\prime}$. Let $\\tilde{u}_{X}^{t}$, $\\tilde{u}_{Y}^{t}$ be time-changes of $u_{X}^{t}$, $u_{Y}^{t}$ respectively. We show the disjointness (in the sense of Furstenberg) between $u_{X}^{t}$ and $\\tilde{u}_{Y}^{t}$ (or $\\tilde{u}_{X}^{t}$ and $u_{Y}^{t}$) in certain situations. Our method refines the works of Ratner and extends a recent work of Dong, Kanigowski and Wei.", "revisions": [ { "version": "v1", "updated": "2021-07-07T15:29:37.000Z" } ], "analyses": { "keywords": [ "unipotent flow", "lorentz groups", "time-changes", "method refines", "furstenberg" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }