{ "id": "2107.03269", "version": "v1", "published": "2021-07-07T15:02:22.000Z", "updated": "2021-07-07T15:02:22.000Z", "title": "Order of Zeros of Dedekind Zeta Functions", "authors": [ "Daniel Hu", "Ikuya Kaneko", "Spencer Martin", "Carl Schildkraut" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Answering a question of Browkin, we unconditionally establish that the Dedekind zeta function of a number field $L$ has infinitely many nontrivial zeros of multiplicity greater than 1 if $L$ has a subfield $K$ for which $L/K$ is a nonabelian Galois extension.", "revisions": [ { "version": "v1", "updated": "2021-07-07T15:02:22.000Z" } ], "analyses": { "subjects": [ "11R42", "20C15" ], "keywords": [ "dedekind zeta function", "nonabelian galois extension", "nontrivial zeros", "multiplicity greater", "number field" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }