{ "id": "2107.02699", "version": "v1", "published": "2021-07-06T16:01:52.000Z", "updated": "2021-07-06T16:01:52.000Z", "title": "On normal numbers and self-similar measures", "authors": [ "Simon Baker" ], "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "In this paper we prove that if $\\{\\varphi_i(x)=\\lambda x+t_i\\}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $\\frac{\\log b}{\\log |\\lambda|}\\notin\\mathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of $\\{\\varphi_i\\}$.", "revisions": [ { "version": "v1", "updated": "2021-07-06T16:01:52.000Z" } ], "analyses": { "keywords": [ "normal numbers", "non-atomic self-similar measure", "equicontractive iterated function system", "positive integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }