{ "id": "2107.02158", "version": "v1", "published": "2021-07-05T17:41:32.000Z", "updated": "2021-07-05T17:41:32.000Z", "title": "Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions", "authors": [ "Terence Tao", "Joni Teräväinen" ], "comment": "53 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "We establish quantitative bounds on the $U^k[N]$ Gowers norms of the M\\\"obius function $\\mu$ and the von Mangoldt function $\\Lambda$ for all $k$, with error terms of shape $O((\\log\\log N)^{-c})$. As a consequence, we obtain quantitative bounds for the number of solutions to any linear system of equations of finite complexity in the primes, with the same shape of error terms.", "revisions": [ { "version": "v1", "updated": "2021-07-05T17:41:32.000Z" } ], "analyses": { "subjects": [ "11B30", "11N37", "37A44" ], "keywords": [ "von mangoldt function", "gowers uniformity", "error terms", "gowers norms", "linear system" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }