{ "id": "2107.01515", "version": "v1", "published": "2021-07-04T00:51:07.000Z", "updated": "2021-07-04T00:51:07.000Z", "title": "The Mazur-Ulam property for uniform algebras", "authors": [ "Osamu Hatori" ], "comment": "17 pages", "categories": [ "math.FA" ], "abstract": "We give a sufficient condition for a Banach space with which the homogeneous extension of a surjective isometry from the unit sphere of it onto another one is real-linear. The condition is satisfied by a uniform algebra and a certain extremely $C$-regular space of real-valued continuous functions.", "revisions": [ { "version": "v1", "updated": "2021-07-04T00:51:07.000Z" } ], "analyses": { "subjects": [ "46B04", "46B20", "46J10", "46J15" ], "keywords": [ "uniform algebra", "mazur-ulam property", "regular space", "sufficient condition", "unit sphere" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }