{ "id": "2107.01033", "version": "v1", "published": "2021-07-01T06:24:22.000Z", "updated": "2021-07-01T06:24:22.000Z", "title": "$L(n)$ graphs are vertex-pancyclic and Hamilton-connected", "authors": [ "S. Morteza Mirafzal", "Sara Kouhi" ], "comment": "7 pages. 1 figure", "categories": [ "math.CO" ], "abstract": "A graph $G$ of order $n>2$ is pancyclic if $G$ contains a cycle of length $l$ for each integer $l$ with $3 \\leq l \\leq n $ and it is called vertex-pancyclic if every vertex is contained in a cycle of length $l$ for every $3 \\leq l \\leq n $. A graph $G$ of order $n > 2$ is Hamilton-connected if for any pair of distinct vertices $u$ and $v$, there is a Hamilton $u$-$v$ path, namely, there is a $u$-$v$ path of length $n-1$. The graph $ B(n)$ is a graph with the vertex set $V=\\{v \\ | \\ v \\subset [n] , | v | \\in \\{ 1,2 \\} \\} $ and the edge set $ E= \\{ \\{ v , w \\} \\ | \\ v , w \\in V , v \\subset w $ or $ w \\subset v \\}$, where $[n]=\\{1,2,...,n\\}$. We denote by $L(n)$ the line graph of $B(n)$, that is, $L(n)=L(B(n))$. In this paper, we show that the graph $L(n)$ is vertex-pancyclic and Hamilton-connected whenever $n\\geq 6$.", "revisions": [ { "version": "v1", "updated": "2021-07-01T06:24:22.000Z" } ], "analyses": { "subjects": [ "05C38", "90B10" ], "keywords": [ "vertex-pancyclic", "edge set", "distinct vertices", "vertex set", "line graph" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }