{ "id": "2107.00916", "version": "v1", "published": "2021-07-02T09:11:31.000Z", "updated": "2021-07-02T09:11:31.000Z", "title": "The fractional chromatic number of $K_Δ$-free graphs", "authors": [ "Xiaolan Hu", "Xing Peng" ], "comment": "19 pages, Comments are welcome", "categories": [ "math.CO" ], "abstract": "For a simple graph $G$, let $\\chi_f(G)$ be the fractional chromatic number of $G$. In this paper, we aim to establish upper bounds on $\\chi_f(G)$ for those graphs $G$ with restrictions on the clique number. Namely, we prove that for $\\Delta \\geq 4$, if $G$ has maximum degree at most $\\Delta$ and is $K_{\\Delta}$-free, then $\\chi_f(G) \\leq \\Delta-\\tfrac{1}{8}$ unless $G= C^2_8$ or $G = C_5\\boxtimes K_2$. This im proves the result in [King, Lu, and Peng, SIAM J. Discrete Math., 26(2) (2012), pp. 452-471] for $\\Delta \\geq 4$ and the result in [Katherine and King, SIAM J.Discrete Math., 27(2) (2013), pp. 1184-1208] for $\\Delta \\in \\{6,7,8\\}$.", "revisions": [ { "version": "v1", "updated": "2021-07-02T09:11:31.000Z" } ], "analyses": { "subjects": [ "05C72", "05C15" ], "keywords": [ "fractional chromatic number", "free graphs", "discrete math", "simple graph", "clique number" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }