{ "id": "2107.00619", "version": "v1", "published": "2021-07-01T17:15:11.000Z", "updated": "2021-07-01T17:15:11.000Z", "title": "Cutting sets of continuous functions on the unit interval", "authors": [ "Marek Balcerzak", "Piotr Nowakowski", "Michał Popławski" ], "categories": [ "math.CA" ], "abstract": "For a function $f\\colon [0,1]\\to\\mathbb R$, we consider the set $E(f)$ of points at which $f$ cuts the real axis. Given $f\\colon [0,1]\\to\\mathbb R$ and a Cantor set $D\\subset [0,1]$ with $\\{0,1\\}\\subset D$, we obtain conditions equivalent to the conjunction $f\\in C[0,1]$ (or $f\\in C^\\infty [0,1]$) and $D\\subset E(f)$. This generalizes some ideas of Zabeti. We observe that, if $f$ is continuous, then $E(f)$ is a closed nowhere dense subset of $f^{-1}[\\{ 0\\}]$ where each $x\\in \\{0,1\\}\\cap E(f)$ is an accumulation point of $E(f)$. Our main result states that, for a closed nowhere dense set $F\\subset [0,1]$ with each $x\\in \\{0,1\\}\\cap E(f)$ being an accumulation point of $F$, there exists $f\\in C^\\infty [0,1]$ such that $F=E(f)$.", "revisions": [ { "version": "v1", "updated": "2021-07-01T17:15:11.000Z" } ], "analyses": { "subjects": [ "54C30", "54E52", "26A30", "26A24" ], "keywords": [ "unit interval", "cutting sets", "continuous functions", "accumulation point", "main result states" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }