{ "id": "2107.00512", "version": "v1", "published": "2021-07-01T14:57:51.000Z", "updated": "2021-07-01T14:57:51.000Z", "title": "Anisotropic symmetrization and Sobolev inequalities on Finsler manifolds with nonnegative Ricci curvature", "authors": [ "Alexandru Kristály", "Ágnes Mester", "Ildikó I. Mezei" ], "comment": "17 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "By using a sharp isoperimetric inequality and an anisotropic symmetrization argument, we establish Morrey-Sobolev and Hardy-Sobolev inequalities on $n$-dimensional Finsler manifolds having nonnegative $n$-Ricci curvature; in some cases we also discuss the sharpness of these functional inequalities. As applications, by using variational arguments, we guarantee the existence/multiplicity of solutions for certain eigenvalue problems and elliptic PDEs involving the Finsler-Laplace operator. Our results are also new in the Riemannian setting.", "revisions": [ { "version": "v1", "updated": "2021-07-01T14:57:51.000Z" } ], "analyses": { "keywords": [ "nonnegative ricci curvature", "sharp isoperimetric inequality", "dimensional finsler manifolds", "anisotropic symmetrization argument", "hardy-sobolev inequalities" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }