{ "id": "2107.00170", "version": "v1", "published": "2021-07-01T01:39:41.000Z", "updated": "2021-07-01T01:39:41.000Z", "title": "A new tableau model for irreducible polynomial representations of the orthogonal group", "authors": [ "Hideya Watanabe" ], "comment": "37 pages", "categories": [ "math.CO", "math.QA", "math.RT" ], "abstract": "We provide a new tableau model from which one can easily deduce the characters of irreducible polynomial representations of the orthogonal group $\\mathrm{O}_n(\\mathbb{C})$. This model originates from representation theory of the $\\imath$quantum group of type AI, and is equipped with a combinatorial structure, which we call AI-crystal structure. This structure enables us to describe combinatorially the tensor product of an $\\mathrm{O}_n(\\mathbb{C})$-module and a $\\mathrm{GL}_n(\\mathbb{C})$-module, and the branching from $\\mathrm{GL}_n(\\mathbb{C})$ to $\\mathrm{O}_n(\\mathbb{C})$.", "revisions": [ { "version": "v1", "updated": "2021-07-01T01:39:41.000Z" } ], "analyses": { "subjects": [ "05E10", "17B10", "17B37" ], "keywords": [ "irreducible polynomial representations", "tableau model", "orthogonal group", "model originates", "ai-crystal structure" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }