{ "id": "2107.00084", "version": "v1", "published": "2021-06-30T20:22:10.000Z", "updated": "2021-06-30T20:22:10.000Z", "title": "An extension of a theorem and errata for \"A Class of Representations of Hecke Algebras\"", "authors": [ "Dean Alvis" ], "comment": "4 pages", "categories": [ "math.RT" ], "abstract": "By Theorem~1.12 of the paper \"A Class of Representations of Hecke Algebras\", if $W$ is a Coxeter group whose proper parabolic subgroups are finite, and if the module of a finite $W$-digraph $\\Gamma$ is isomorphic to the module of a $W$-graph, then $\\Gamma$ must be acyclic. Here we extend this result to Coxeter groups with finite dihedral parabolic subgroups and $W$-graphs with arbitrary scalar edge labels. Also, errata for the paper are listed in the last section.", "revisions": [ { "version": "v1", "updated": "2021-06-30T20:22:10.000Z" } ], "analyses": { "subjects": [ "20C08" ], "keywords": [ "hecke algebras", "representations", "coxeter group", "arbitrary scalar edge labels", "finite dihedral parabolic subgroups" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }