{ "id": "2106.16141", "version": "v1", "published": "2021-06-30T15:46:38.000Z", "updated": "2021-06-30T15:46:38.000Z", "title": "Leafwise flat forms on Inoue-Bombieri surfaces", "authors": [ "Daniele Angella", "Valentino Tosatti" ], "comment": "24 pages. Comments are welcome", "categories": [ "math.DG", "math.CV" ], "abstract": "We prove that every Gauduchon metric on an Inoue-Bombieri surface admits a strongly leafwise flat form in its $\\partial\\overline\\partial$-class. Using this result, we deduce uniform convergence of the normalized Chern-Ricci flow starting at any Gauduchon metric on all Inoue-Bombieri surfaces. We also show that the convergence is smooth with bounded curvature for initial metrics in the $\\partial\\overline\\partial$-class of the Tricerri/Vaisman metric.", "revisions": [ { "version": "v1", "updated": "2021-06-30T15:46:38.000Z" } ], "analyses": { "keywords": [ "gauduchon metric", "inoue-bombieri surface admits", "deduce uniform convergence", "strongly leafwise flat form", "tricerri/vaisman metric" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }