{ "id": "2106.15582", "version": "v1", "published": "2021-06-29T17:16:54.000Z", "updated": "2021-06-29T17:16:54.000Z", "title": "Non-left-orderability of cyclic branched covers of pretzel knots $P(3,-3,-2k-1)$", "authors": [ "Lin Li", "Zipei Nie" ], "comment": "5 pages, 2 figures", "categories": [ "math.GT" ], "abstract": "We prove the non-left-orderability of the fundamental group of the $n$-th fold cyclic branched cover of the pretzel knot $P(3,-3,-2k-1)$ for all integers $k$ and $n\\ge 1$. These $3$-manifolds are $L$-spaces discovered by Issa and Turner.", "revisions": [ { "version": "v1", "updated": "2021-06-29T17:16:54.000Z" } ], "analyses": { "keywords": [ "pretzel knot", "non-left-orderability", "th fold cyclic branched cover", "fundamental group" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }