{ "id": "2106.14558", "version": "v1", "published": "2021-06-28T10:29:53.000Z", "updated": "2021-06-28T10:29:53.000Z", "title": "Diophantine problems related to cyclic cubic and quartic fields", "authors": [ "Szabolcs Tengely", "Maciej Ulas" ], "categories": [ "math.NT" ], "abstract": "We are interested in solving the congruences $f^3+g^3+1\\equiv 0\\pmod{fg}$ and $f^4-4g^2+4\\equiv 0\\pmod{fg}$ in polynomials $f, g$ with rational coefficients. Moreover, we present results of computations of all integer points on certain one parametric curves of genus 1 and 3, related to cubic and quartic fields, respectively.", "revisions": [ { "version": "v1", "updated": "2021-06-28T10:29:53.000Z" } ], "analyses": { "keywords": [ "quartic fields", "cyclic cubic", "diophantine problems", "rational coefficients", "integer points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }