{ "id": "2106.14051", "version": "v1", "published": "2021-06-26T16:02:23.000Z", "updated": "2021-06-26T16:02:23.000Z", "title": "Limiting weak-type behaviors for singular integrals with rough $L\\log L(\\mathbb{S}^n)$ kernels", "authors": [ "Moyan Qin", "Huoxiong Wu", "Qingying Xue" ], "comment": "26 pages. arXiv admin note: text overlap with arXiv:2011.11512", "categories": [ "math.CA" ], "abstract": "Let $\\Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $\\mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_\\Omega$ associated with rough kernel $\\Omega$. We show that, if $\\Omega\\in L\\log L(\\mathbb S^{n})$, then $\\lim_{\\lambda\\to0^+}\\lambda|\\{x\\in\\mathbb{R}^n:|T_\\Omega(f)(x)|>\\lambda\\}| = n^{-1}\\|\\Omega\\|_{L^1(\\mathbb {S}^n)}\\|f\\|_{L^1(\\mathbb{R}^n)},\\quad0\\le f\\in L^1(\\mathbb{R}^n).$ Moreover,$(n^{-1}\\|\\Omega\\|_{L^1(\\mathbb{S}^{n-1})}$ is a lower bound of weak-type norm of $T_\\Omega$ when $\\Omega\\in L\\log L(\\mathbb{S}^{n-1})$. Corresponding results for rough bilinear singular integral operators defined in the form $T_{\\vec\\Omega}(f_1,f_2) = T_{\\Omega_1}(f_1)\\cdot T_{\\Omega_2}(f_2)$ have also been established.", "revisions": [ { "version": "v1", "updated": "2021-06-26T16:02:23.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "limiting weak-type behavior", "rough bilinear singular integral operators", "lower bound", "weak-type norm", "rough kernel" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }