{ "id": "2106.14000", "version": "v1", "published": "2021-06-26T11:15:55.000Z", "updated": "2021-06-26T11:15:55.000Z", "title": "Gibbs point processes on path space: existence, cluster expansion and uniqueness", "authors": [ "Alexander Zass" ], "comment": "31 pages, 5 figures", "categories": [ "math.PR" ], "abstract": "We study a class of infinite-dimensional diffusions under Gibbsian interactions, in the context of marked point configurations: the starting points belong to $\\mathbb{R}^d$, and the marks are the paths of Langevin diffusions. We use the entropy method to prove existence of an infinite-volume Gibbs point process and use cluster expansion tools to provide an explicit activity domain in which uniqueness holds.", "revisions": [ { "version": "v1", "updated": "2021-06-26T11:15:55.000Z" } ], "analyses": { "keywords": [ "path space", "infinite-volume gibbs point process", "cluster expansion tools", "explicit activity domain", "uniqueness holds" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }