{ "id": "2106.13983", "version": "v1", "published": "2021-06-26T09:35:43.000Z", "updated": "2021-06-26T09:35:43.000Z", "title": "A generalization of Tóth identity in the ring of algebraic integers involving a Dirichlet Character", "authors": [ "Subha Sarkar" ], "categories": [ "math.NT" ], "abstract": "The $k$-dimensional generalized Euler function $\\varphi_k(n)$ is defined to be the number of ordered $k$-tuples $(a_1,a_2,\\ldots, a_k) \\in \\mathbb{N}^k$ with $1\\leq a_1,a_2,\\ldots, a_k \\leq n$ such that both the product $a_1a_2\\cdots a_k$ and the sum $a_1+a_2+\\cdots+a_k$ are co-prime to $n$. T\\'oth proved that the identity \\begin{equation*} \\sum_{\\substack{a_1,a_2,\\ldots, a_k=1 \\\\ \\gcd(a_1a_2\\cdots a_k,n)=1\\\\ \\gcd(a_1+a_2+\\cdots+a_k,n)=1}}^n \\gcd(a_1+a_2+\\cdots+a_k-1,n) =\\varphi_k(n)\\sigma_0(n), \\;\\; \\text{ where } \\sigma_s(n) = \\sum_{d\\mid n}d^s \\;\\; \\text{ holds. } \\end{equation*} This identity can also be viewed as a generalization of Menon's identity. In this article, we generalize this identity to the ring of algebraic integers involving arithmetical functions and Dirichlet characters.", "revisions": [ { "version": "v1", "updated": "2021-06-26T09:35:43.000Z" } ], "analyses": { "subjects": [ "11A07", "11A25" ], "keywords": [ "algebraic integers", "dirichlet character", "tóth identity", "generalization", "dimensional generalized euler function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }