{ "id": "2106.13968", "version": "v1", "published": "2021-06-26T08:34:21.000Z", "updated": "2021-06-26T08:34:21.000Z", "title": "EMSO(FO$^2$) 0-1 law fails for all dense random graphs", "authors": [ "Margarita Akhmejanova", "Maksim Zhukovskii" ], "categories": [ "math.CO" ], "abstract": "In this paper, we disprove EMSO(FO$^2$) convergence law for the binomial random graph $G(n,p)$ for any constant probability $p$. More specifically, we prove that there exists an existential monadic second order sentence with 2 first order variables such that, for every $p\\in(0,1)$, the probability that it is true on $G(n,p)$ does not converge.", "revisions": [ { "version": "v1", "updated": "2021-06-26T08:34:21.000Z" } ], "analyses": { "keywords": [ "dense random graphs", "law fails", "existential monadic second order sentence", "binomial random graph", "first order variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }