{ "id": "2106.13413", "version": "v1", "published": "2021-06-25T03:55:47.000Z", "updated": "2021-06-25T03:55:47.000Z", "title": "Is the free locally convex space $L(X)$ nuclear?", "authors": [ "Arkady Leiderman", "Vladimir Uspenskij" ], "comment": "10 pages", "categories": [ "math.GN", "math.FA" ], "abstract": "Let $X$ be a Tychonoff space containing an infinite compact subset, we observe that the free locally convex space $L(X)$ is not nuclear; moreover, we prove a stronger result: $L(X)$ cannot be embedded in a product of Hilbert spaces. If $X$ is a $k$-space, then $L(X)$ is nuclear if and only if $X$ is countable and discrete. On the other hand, we show that $L(X)$ is nuclear for every projectively countable $P$-space (in particular, for every Lindel\\\"of $P$-space) $X$. In a sharp contrast with the nuclear property, we prove that $L(X)$ can be embedded in a product of reflexive Banach spaces, for every compact space $X$. However, we provide examples of completely metrizable $X$ such that $L(X)$ cannot be embedded in a product of reflexive Banach spaces.", "revisions": [ { "version": "v1", "updated": "2021-06-25T03:55:47.000Z" } ], "analyses": { "subjects": [ "46A03", "46B25", "54D30" ], "keywords": [ "free locally convex space", "reflexive banach spaces", "infinite compact subset", "stronger result", "compact space" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }