{ "id": "2106.12861", "version": "v1", "published": "2021-06-24T09:50:41.000Z", "updated": "2021-06-24T09:50:41.000Z", "title": "Many-body localization and the area law in two dimensions", "authors": [ "Kevin S. C. Decker", "Dante M. Kennes", "Christoph Karrasch" ], "comment": "5 pages, 5 figures", "categories": [ "cond-mat.dis-nn", "cond-mat.stat-mech" ], "abstract": "We study the high-energy phase diagram of a two-dimensional spin-$\\frac{1}{2}$ Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy for systems of up to $30\\times7$ lattice sites. We demonstrate the existence of a finite many-body localized phase for large disorder strength $W$ for which the eigenstate thermalization hypothesis is violated. Moreover, we show explicitly that the area law holds for excited states in this phase and determine an estimate for the critical $W_{\\rm{c}}$ where the transition to the ergodic phase occurs.", "revisions": [ { "version": "v1", "updated": "2021-06-24T09:50:41.000Z" } ], "analyses": { "keywords": [ "many-body localization", "dimensions", "large-scale tensor network numerics", "ergodic phase occurs", "bi-partite entanglement entropy" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }