{ "id": "2106.12418", "version": "v1", "published": "2021-06-23T14:11:27.000Z", "updated": "2021-06-23T14:11:27.000Z", "title": "On Limit sets of Monotone maps on Regular curves", "authors": [ "Aymen Daghar", "Habib Marzougui" ], "comment": "18 pages, 1 figure", "categories": [ "math.DS" ], "abstract": "We investigate the structure of $\\omega$-limit (resp. $\\alpha$-limit) sets for a monotone map $f$ on a regular curve $X$. %Let $X$ be a regular curve and let $f: X\\longrightarrowX$ be a monotone map. We show that for any $x\\in X$ (resp. for any negative orbit $(x_{n})_{n\\geq 0}$ of $x$), the $\\omega$-limit set $\\omega_{f}(x)$ (resp. $\\alpha$-limit set $\\alpha_{f}((x_{n})_{n\\geq 0})$) is a minimal set. This also hold for $\\alpha$-limit set $\\alpha_{f}(x)$ whenever $x$ is not a periodic point. These results extend those of Naghmouchi \\cite{n} %[J. Difference Equ. Appl., 23 (2017), 1485--1490] established whenever $f$ is a homeomorphism on a regular curve and those of Abdelli \\cite{a} %[Chaos, Solitons Fractals, 71 (2015), 66--72] , whenever $f$ is a monotone map on a local dendrite. Further results related to the basin of attraction of an infinite minimal set are also obtained.", "revisions": [ { "version": "v1", "updated": "2021-06-23T14:11:27.000Z" } ], "analyses": { "subjects": [ "37B20", "37B45", "54H20" ], "keywords": [ "monotone map", "regular curve", "limit set", "infinite minimal set", "results extend" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }