{ "id": "2106.12099", "version": "v1", "published": "2021-06-22T23:29:40.000Z", "updated": "2021-06-22T23:29:40.000Z", "title": "Structural properties of bipartite subgraphs", "authors": [ "Robert Hickingbotham", "David R. Wood" ], "categories": [ "math.CO" ], "abstract": "This paper establishes sufficient conditions that force a graph to contain a bipartite subgraph with a given structural property. In particular, let $\\beta$ be any of the following graph parameters: Hadwiger number, Haj\\'{o}s number, treewidth, pathwidth, and treedepth. In each case, we show that there exists a function $f$ such that every graph $G$ with $\\beta(G)\\geq f(k)$ contains a bipartite subgraph $\\hat{G}\\subseteq G$ with $\\beta(\\hat{G})\\geq k$.", "revisions": [ { "version": "v1", "updated": "2021-06-22T23:29:40.000Z" } ], "analyses": { "keywords": [ "bipartite subgraph", "structural property", "paper establishes sufficient conditions", "hadwiger number", "graph parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }