{ "id": "2106.10833", "version": "v1", "published": "2021-06-21T03:50:31.000Z", "updated": "2021-06-21T03:50:31.000Z", "title": "Triviality results for quasi $k$-Yamabe solitons", "authors": [ "Willian Tokura", "Elismar Batista", "Priscila Kai" ], "categories": [ "math.DG" ], "abstract": "In this paper, we show that any compact quasi $k$-Yamabe gradient solitons must have constant $\\sigma_{k}$-curvature. Moreover, we provide a certain condition for a compact quasi $k$-Yamabe soliton to be gradient, and for noncompact solitons, we present a geometric rigidity under a decaiment condition on the norm of the soliton field.", "revisions": [ { "version": "v1", "updated": "2021-06-21T03:50:31.000Z" } ], "analyses": { "keywords": [ "yamabe soliton", "triviality results", "compact quasi", "yamabe gradient solitons", "soliton field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }