{ "id": "2106.09195", "version": "v1", "published": "2021-06-17T01:11:05.000Z", "updated": "2021-06-17T01:11:05.000Z", "title": "On the Classifying Space for Commutativity in $U(3)$", "authors": [ "Santanil Jana" ], "categories": [ "math.AT" ], "abstract": "For a Lie group $G$, let $B_{com} G$ be the classifying space for commutativity. Let $E_{com} G$ be the total space of the principal $G$-bundle associated to $B_{com} G$. In this article, we present a computation of the cohomology of $E_{com} U(3)$ using the spectral sequence associated to a homotopy colimit. As a part of our computation we will also compute the integral cohomology of $U(3)/N(T)$ and $(U(3)/T) \\times_{\\Sigma_3} (U(3)/T)$ where $T$ is a maximal torus of $U(3)$ with normalizer $N(T)$.", "revisions": [ { "version": "v1", "updated": "2021-06-17T01:11:05.000Z" } ], "analyses": { "subjects": [ "55R40", "55R20" ], "keywords": [ "classifying space", "commutativity", "maximal torus", "lie group", "integral cohomology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }