{ "id": "2106.09126", "version": "v1", "published": "2021-06-16T20:56:22.000Z", "updated": "2021-06-16T20:56:22.000Z", "title": "The minimal ramification problem for rational function fields over finite fields", "authors": [ "Lior Bary-Soroker", "Alexei Entin", "Arno Fehm" ], "categories": [ "math.NT" ], "abstract": "We study the minimal number of ramified primes in Galois extensions of rational function fields over finite fields with prescribed finite Galois group. In particular, we obtain a general conjecture in analogy with the well studied case of number fields, which we establish for abelian, symmetric and alternating groups in many cases.", "revisions": [ { "version": "v1", "updated": "2021-06-16T20:56:22.000Z" } ], "analyses": { "subjects": [ "12F12", "11R32", "11S15", "11R58" ], "keywords": [ "rational function fields", "minimal ramification problem", "finite fields", "prescribed finite galois group", "general conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }