{ "id": "2106.07532", "version": "v1", "published": "2021-06-14T15:57:50.000Z", "updated": "2021-06-14T15:57:50.000Z", "title": "Hilbert points in Hardy spaces", "authors": [ "Ole Fredrik Brevig", "Joaquim Ortega-Cerdà ", "Kristian Seip" ], "categories": [ "math.FA", "math.CA", "math.CV" ], "abstract": "A Hilbert point in $H^p(\\mathbb{T}^d)$, for $d\\geq1$ and $1\\leq p \\leq \\infty$, is a nontrivial function $\\varphi$ in $H^p(\\mathbb{T}^d)$ such that $\\| \\varphi \\|_{H^p(\\mathbb{T}^d)} \\leq \\|\\varphi + f\\|_{H^p(\\mathbb{T}^d)}$ whenever $f$ is in $H^p(\\mathbb{T}^d)$ and orthogonal to $\\varphi$ in the usual $L^2$ sense. When $p\\neq 2$, $\\varphi$ is a Hilbert point in $H^p(\\mathbb{T})$ if and only if $\\varphi$ is a nonzero multiple of an inner function. An inner function on $\\mathbb{T}^d$ is a Hilbert point in any of the spaces $H^p(\\mathbb{T}^d)$, but there are other Hilbert points as well when $d\\geq 2$. We investigate the case of $1$-homogeneous polynomials in depth and obtain as a byproduct a new proof of the sharp Khintchin inequality for Steinhaus variables in the range $2
4$ but only numerically for $1\\leq p<4$.", "revisions": [ { "version": "v1", "updated": "2021-06-14T15:57:50.000Z" } ], "analyses": { "keywords": [ "hardy spaces", "inner function", "characterizes hilbert points", "sharp khintchin inequality", "nonlinear projection operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }