{ "id": "2106.06572", "version": "v1", "published": "2021-06-11T18:47:33.000Z", "updated": "2021-06-11T18:47:33.000Z", "title": "Hausdorff dimension of Gauss--Cantor sets and two applications to classical Lagrange and Markov spectra", "authors": [ "Carlos Matheus", "Carlos Gustavo Moreira", "Mark Pollicott", "Polina Vytnova" ], "comment": "47 pages, 4 figures", "categories": [ "math.NT", "math.DS" ], "abstract": "This paper is dedicated to the study of two famous subsets of the real line, namely Lagrange spectrum $L$ and Markov spectrum $M$. Our first result, Theorem \\ref{t.A}, provides a rigorous estimate on the smallest value $t_1$ such that the portion of the Markov spectrum $(-\\infty,t_1)\\cap M$ has Hausdorff dimension $1$. Our second result, Theorem \\ref{t.B}, gives a new upper bound on the Hausdorff dimension of the set difference $M\\setminus L$. Our method combines new facts about the structure of the classical spectra together with finer estimates on the Hausdorff dimension of Gauss--Cantor sets of continued fraction expansions whose entries satisfy appropriate restrictions.", "revisions": [ { "version": "v1", "updated": "2021-06-11T18:47:33.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "markov spectrum", "gauss-cantor sets", "classical lagrange", "applications" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }