{ "id": "2106.06495", "version": "v1", "published": "2021-06-11T16:43:43.000Z", "updated": "2021-06-11T16:43:43.000Z", "title": "Geometric properties of certain integral operators involving Hornich operations", "authors": [ "S. Kumar" ], "categories": [ "math.CV" ], "abstract": "In this article, we investigate some standard geometric properties of the integral operator $$ C_{\\alpha,\\beta}[f,g](z)=\\int_{0}^{z}\\bigg(\\frac{f(w)}{w}\\bigg)^\\alpha (g'(w))^\\beta dw, \\,\\,\\, \\alpha,\\beta \\in \\mathbb{R} \\text{ and } |z|<1, $$ where $f$ and $g$ are elements of certain classical families of normalized analytic functions defined on the unit disk. Here, the exponents are chosen in such a way that the respective functions are analytic in suitable branches.", "revisions": [ { "version": "v1", "updated": "2021-06-11T16:43:43.000Z" } ], "analyses": { "subjects": [ "47B38", "30C45", "30C55" ], "keywords": [ "integral operator", "hornich operations", "standard geometric properties", "normalized analytic functions", "unit disk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }