{ "id": "2106.06318", "version": "v1", "published": "2021-06-11T11:35:15.000Z", "updated": "2021-06-11T11:35:15.000Z", "title": "On the Size of Minimal Surfaces in $\\mathbb{R}^4$", "authors": [ "Ari Aiolfi", "Marc Soret", "Marina Ville" ], "comment": "19 pages, 3 figures", "categories": [ "math.DG" ], "abstract": "The Gauss map $g$ of a surface $\\Sigma$ in $\\mathbb{R}^4$ takes its values in the Grassmannian of oriented 2-planes of $\\mathbb{R}^4$: $G^+(2,4)$. We give geometric criteria of stability for minimal surfaces in $\\mathbb{R}^4$ in terms of $g$. We show in particular that if the spherical area of the Gauss map $|g(\\Sigma)|$ of a minimal surface is smaller than $2\\pi$ then the surface is stable by deformations which fix the boundary of the surface.This answers a question of Barbosa and Do Carmo in $\\mathbb{R}^4$.", "revisions": [ { "version": "v1", "updated": "2021-06-11T11:35:15.000Z" } ], "analyses": { "subjects": [ "53A10" ], "keywords": [ "minimal surface", "gauss map", "geometric criteria", "spherical area", "grassmannian" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }