{ "id": "2106.05322", "version": "v1", "published": "2021-06-09T18:27:13.000Z", "updated": "2021-06-09T18:27:13.000Z", "title": "Iwasawa theory for ${\\rm GL}_2\\times{\\rm GL}_2$ and diagonal cycles", "authors": [ "Raúl Alonso", "Francesc Castella", "Óscar Rivero" ], "comment": "46 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "We construct an anticyclotomic Euler system for the Rankin--Selberg convolution of two modular forms, using $p$-adic families of generalized Gross--Kudla--Schoen diagonal cycles. As applications of this construction, we prove new cases of the Bloch--Kato conjecture in analytic rank zero (and results towards new cases in analytic rank one), and a divisibility towards an Iwasawa main conjecture.", "revisions": [ { "version": "v1", "updated": "2021-06-09T18:27:13.000Z" } ], "analyses": { "subjects": [ "11R23", "11F85", "14G35" ], "keywords": [ "iwasawa theory", "analytic rank zero", "iwasawa main conjecture", "generalized gross-kudla-schoen diagonal cycles", "anticyclotomic euler system" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable" } } }