{ "id": "2106.04711", "version": "v1", "published": "2021-06-08T22:04:32.000Z", "updated": "2021-06-08T22:04:32.000Z", "title": "On co-$σ$-porosity of the parameters with dense critical orbits for skew tent maps and matching on generalized $β$-transformations", "authors": [ "Henk Bruin", "Gabriella Keszthelyi" ], "categories": [ "math.DS" ], "abstract": "We prove that the critical point and the point $1$ have dense orbits for Lebesgue-a.e., parameter pairs in the two-parameter skew-tent family and generalised $\\beta$-transformations. As an application, we show that for the generalised $\\beta$-transformation with the tribonacci number as slope, there is matching (i.e., $T^n(0)=T^n(1)$ for some $n \\geq 1$) for Lebesgue-a.e. translation parameter.", "revisions": [ { "version": "v1", "updated": "2021-06-08T22:04:32.000Z" } ], "analyses": { "subjects": [ "37E10", "11R06", "37E05", "37E45", "37A45" ], "keywords": [ "skew tent maps", "dense critical orbits", "transformation", "translation parameter", "lebesgue-a" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }