{ "id": "2106.04019", "version": "v1", "published": "2021-06-08T00:10:21.000Z", "updated": "2021-06-08T00:10:21.000Z", "title": "Random walks on SL_2(C): spectral gap and local limit theorems", "authors": [ "Tien-Cuong Dinh", "Lucas Kaufmann", "Hao Wu" ], "comment": "49 pages", "categories": [ "math.PR", "math.CV", "math.DS" ], "abstract": "We obtain new limit theorems for random walks on SL_2(C) under low moment conditions. For non-elementary measures with a finite second moment we prove a Local Limit Theorem for the norm cocycle, yielding the optimal version of a theorem of \\'E. Le Page. We also obtain a Local Limit Theorem for the matrix coefficients under a third moment condition, improving a recent result of Grama-Quint-Xiao. The main tool is a detailed study of the spectral properties of the Markov operator and its purely imaginary perturbations acting on different function spaces. We introduce, in particular, a new function space derived from the Sobolev space W^{1,2} that provides uniform estimates.", "revisions": [ { "version": "v1", "updated": "2021-06-08T00:10:21.000Z" } ], "analyses": { "subjects": [ "60B15", "60B20", "37C30" ], "keywords": [ "local limit theorem", "random walks", "spectral gap", "function space", "third moment condition" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }