{ "id": "2106.03675", "version": "v1", "published": "2021-06-07T14:56:55.000Z", "updated": "2021-06-07T14:56:55.000Z", "title": "Mild pro-p groups and the Koszulity conjectures", "authors": [ "Jan Minac", "Federico Pasini", "Claudio Quadrelli", "Nguyen Duy Tân" ], "categories": [ "math.GR", "math.NT" ], "abstract": "Let $p$ be a prime, and $\\mathbb{F}_p$ the field with $p$ elements. We prove that if $G$ is a mild pro-$p$ group with quadratic $\\mathbb{F}_p$-cohomology algebra $H^\\bullet(G,\\mathbb{F}_p)$, then the algebras $H^\\bullet(G,\\mathbb{F}_p)$ and $\\mathrm{gr}\\mathbb{F}_p[\\![G]\\!]$ - the latter being induced by the quotients of consecutive terms of the $p$-Zassenhaus filtration of $G$ - are both Koszul, and they are quadratically dual to each other. Consequently, if the maximal pro-$p$ Galois group of a field is mild, then Positselski's and Weigel's Koszulity conjectures hold true for such a field.", "revisions": [ { "version": "v1", "updated": "2021-06-07T14:56:55.000Z" } ], "analyses": { "subjects": [ "12G05", "16S37", "20E18", "12F10", "20J06" ], "keywords": [ "mild pro-p groups", "weigels koszulity conjectures hold true", "cohomology algebra", "galois group", "zassenhaus filtration" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }