{ "id": "2106.03659", "version": "v1", "published": "2021-06-04T16:25:35.000Z", "updated": "2021-06-04T16:25:35.000Z", "title": "Partial Sums of the Fibonacci Sequence", "authors": [ "Hung Viet Chu" ], "comment": "4 pages", "journal": "Fib. Quart., 59:2 (May 2021), 132-135", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $(F_n)_{n\\ge 1}$ be the Fibonacci sequence. Define $P(F_n): = (\\sum_{i=1}^n F_i)_{n\\ge 1}$; that is, the function $P$ gives the sequence of partial sums of $(F_n)$. In this paper, we first give an identity involving $P^k(F_n)$, which is the resulting sequence from applying $P$ to $(F_n)$ $k$ times. Second, we provide a combinatorial interpretation of the numbers in $P^k(F_n)$.", "revisions": [ { "version": "v1", "updated": "2021-06-04T16:25:35.000Z" } ], "analyses": { "subjects": [ "11B39" ], "keywords": [ "fibonacci sequence", "partial sums", "combinatorial interpretation", "resulting sequence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }