{ "id": "2106.03338", "version": "v1", "published": "2021-06-07T05:06:33.000Z", "updated": "2021-06-07T05:06:33.000Z", "title": "On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane", "authors": [ "Tuomas Orponen", "Pablo Shmerkin" ], "comment": "48 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "Let $0 \\leq s \\leq 1$ and $0 \\leq t \\leq 2$. An $(s,t)$-Furstenberg set is a set $K \\subset \\mathbb{R}^{2}$ with the following property: there exists a line set $\\mathcal{L}$ of Hausdorff dimension $\\dim_{\\mathrm{H}} \\mathcal{L} \\geq t$ such that $\\dim_{\\mathrm{H}} (K \\cap \\ell) \\geq s$ for all $\\ell \\in \\mathcal{L}$. We prove that for $s\\in (0,1)$, and $t \\in (s,2]$, the Hausdorff dimension of $(s,t)$-Furstenberg sets in $\\mathbb{R}^{2}$ is no smaller than $2s + \\epsilon$, where $\\epsilon > 0$ depends only on $s$ and $t$. For $s>1/2$ and $t = 1$, this is an $\\epsilon$-improvement over a result of Wolff from 1999. The same method also yields an $\\epsilon$-improvement to Kaufman's projection theorem from 1968. We show that if $s \\in (0,1)$, $t \\in (s,2]$ and $K \\subset \\mathbb{R}^{2}$ is an analytic set with $\\dim_{\\mathrm{H}} K = t$, then $$\\dim_{\\mathrm{H}} \\{e \\in S^{1} : \\dim_{\\mathrm{H}} \\pi_{e}(K) \\leq s\\} \\leq s - \\epsilon,$$ where $\\epsilon > 0$ only depends on $s$ and $t$. Here $\\pi_{e}$ is the orthogonal projection to $\\mathrm{span}(e)$.", "revisions": [ { "version": "v1", "updated": "2021-06-07T05:06:33.000Z" } ], "analyses": { "subjects": [ "28A80", "28A75", "28A78" ], "keywords": [ "hausdorff dimension", "furstenberg set", "orthogonal projection", "kaufmans projection theorem", "line set" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }