{ "id": "2106.03147", "version": "v1", "published": "2021-06-06T14:58:59.000Z", "updated": "2021-06-06T14:58:59.000Z", "title": "Exponential mixing implies Bernoulli", "authors": [ "Dmitry Dolgopyat", "Adam Kanigowski", "Federico Rodriguez-Hertz" ], "categories": [ "math.DS" ], "abstract": "Let $f$ be a $C^{1+\\alpha}$ diffeomorphism of a compact manifold $M$ preserving a smooth measure $\\mu$. We show that if $f:(M,\\mu)\\to (M,\\mu)$ is exponentially mixing then it is Bernoulli.", "revisions": [ { "version": "v1", "updated": "2021-06-06T14:58:59.000Z" } ], "analyses": { "subjects": [ "37A25", "37D25", "37C40" ], "keywords": [ "exponential mixing implies bernoulli", "compact manifold", "smooth measure", "diffeomorphism" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }