{ "id": "2106.02895", "version": "v1", "published": "2021-06-05T13:38:14.000Z", "updated": "2021-06-05T13:38:14.000Z", "title": "On length of the period of the continued fraction of $n\\sqrt{d}$", "authors": [ "Filip Gawron", "Tomasz Kobos" ], "categories": [ "math.NT" ], "abstract": "For a given quadratic irrational $\\alpha$, let us denote by $D(\\alpha)$ the length of the periodic part of the continued fraction expansion of $\\alpha$. We prove that for a positive integer $d$, which is not a perfect square, the sequence $(D(n\\sqrt{d}))_{n=1}^{\\infty}$ has infinitely many limit points.", "revisions": [ { "version": "v1", "updated": "2021-06-05T13:38:14.000Z" } ], "analyses": { "subjects": [ "11A55" ], "keywords": [ "limit points", "quadratic irrational", "perfect square", "continued fraction expansion", "periodic part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }