{ "id": "2106.02230", "version": "v1", "published": "2021-06-04T03:10:21.000Z", "updated": "2021-06-04T03:10:21.000Z", "title": "Maximal antichains of subsets II: Constructions", "authors": [ "Jerrold R. Griggs", "Thomas Kalinowski", "Uwe Leck", "Ian T. Roberts", "Michael Schmitz" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "This is the second in a sequence of three papers investigating the question for which positive integers $m$ there exists a maximal antichain of size $m$ in the Boolean lattice $B_n$ (the power set of $[n]:=\\{1,2,\\dots,n\\}$, ordered by inclusion). In the previous paper we characterized those $m$ between the maximum size $\\binom{n}{\\lfloor n/2 \\rfloor}$ and $\\binom{n}{\\lceil n/2\\rceil}-\\lceil n/2\\rceil^2$ that are not sizes of maximal antichains. In this paper we show that all smaller $m$ are sizes of maximal antichains.", "revisions": [ { "version": "v1", "updated": "2021-06-04T03:10:21.000Z" } ], "analyses": { "subjects": [ "06A07", "05D05" ], "keywords": [ "maximal antichain", "constructions", "power set", "boolean lattice", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }