{ "id": "2106.01937", "version": "v1", "published": "2021-06-03T15:39:00.000Z", "updated": "2021-06-03T15:39:00.000Z", "title": "On a partition with a lower expected $\\mathcal{L}_2$-discrepancy than classical jittered sampling", "authors": [ "Markus Kiderlen", "Florian Pausinger" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "We prove that classical jittered sampling of the $d$-dimensional unit cube does not yield the smallest expected $\\mathcal{L}_2$-discrepancy among all stratified samples with $N=m^d$ points. Our counterexample can be given explicitly and consists of convex partitioning sets of equal volume.", "revisions": [ { "version": "v1", "updated": "2021-06-03T15:39:00.000Z" } ], "analyses": { "subjects": [ "11K38", "60C05", "05A18", "60D99" ], "keywords": [ "classical jittered sampling", "discrepancy", "dimensional unit cube", "equal volume", "convex partitioning sets" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }