{ "id": "2106.01585", "version": "v1", "published": "2021-06-03T04:13:38.000Z", "updated": "2021-06-03T04:13:38.000Z", "title": "Exponential mixing, KAM and smooth local rigidity", "authors": [ "Ralf Spatzier", "Lei Yang" ], "categories": [ "math.DS" ], "abstract": "Consider actions of $\\Z ^r$ by ergodic automorphisms on a compact nilmanifolds for $r \\geq 2$. We show that small $C^k$ perturbations of such higher rank partially hyperbolic actions are smoothly conjugate to the original action, using a KAM scheme. The driving force for convergence of this iteration is the exponential mixing of the original action.", "revisions": [ { "version": "v1", "updated": "2021-06-03T04:13:38.000Z" } ], "analyses": { "subjects": [ "37C15", "37C85", "37J40" ], "keywords": [ "smooth local rigidity", "exponential mixing", "original action", "higher rank partially hyperbolic actions", "compact nilmanifolds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }