{ "id": "2106.01252", "version": "v1", "published": "2021-06-02T16:07:10.000Z", "updated": "2021-06-02T16:07:10.000Z", "title": "On power integral bases of certain pure number fields defined by $x^{2^u\\cdot3^v}-m$", "authors": [ "H. Ben Yakkou", "Lhoussain El Fadil", "A. Najim" ], "comment": "Submitted. arXiv admin note: substantial text overlap with arXiv:2102.01967, arXiv:2106.00004, arXiv:2006.11230", "categories": [ "math.NT" ], "abstract": "Let $K = \\mathbb{Q} (\\alpha) $ be a pure number field generated by a complex root $\\alpha$ of a monic irreducible polynomial $ F(x) = x^{2^u\\cdot 3^v}-m$, with $m \\neq \\pm 1$ a square free rational integer, $u$, and $v$ two positive integers. In this paper, we study the monogenity of $K$. The case $u=0$ or $v=0$ has been previously studied. We prove that if $m\\not\\equiv 1$ (mod4) and $m\\not\\equiv \\pm 1$ (mod9), then $K$ is monogenic. But if $m\\equiv 1$ (mod4) or $m\\equiv 1$ (mod9), then $K$ is not monogenic. Some illustrating examples are given too.", "revisions": [ { "version": "v1", "updated": "2021-06-02T16:07:10.000Z" } ], "analyses": { "subjects": [ "11R04", "11R16", "11R21", "G.0" ], "keywords": [ "pure number field", "power integral bases", "square free rational integer", "complex root", "monic irreducible polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }