{ "id": "2106.00540", "version": "v1", "published": "2021-06-01T14:53:05.000Z", "updated": "2021-06-01T14:53:05.000Z", "title": "Ill-posedness for the higher dimensional Camassa-Holm equations in Besov spaces", "authors": [ "Min Li", "Yingying Guo" ], "comment": "13 pages. arXiv admin note: text overlap with arXiv:2104.05973 by other authors", "categories": [ "math.AP" ], "abstract": "In the paper, by constructing a initial data $u_{0}\\in B^{\\sigma}_{p,\\infty}$ with $\\sigma-2>\\max\\{1+\\frac 1 p, \\frac 3 2\\}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $t=0$ in the norm of $B^{\\sigma}_{p,\\infty}$, which implies that the ill-posedness for the higher dimensional Camassa-Holm equations in $B^{\\sigma}_{p,\\infty}$.", "revisions": [ { "version": "v1", "updated": "2021-06-01T14:53:05.000Z" } ], "analyses": { "subjects": [ "35A01", "35Q35", "37K10", "35A01", "35Q35", "37K10" ], "keywords": [ "besov spaces", "ill-posedness", "higher dimensional camassa-holm equations starting", "initial data", "corresponding solution" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }