{ "id": "2105.15016", "version": "v1", "published": "2021-05-31T14:54:39.000Z", "updated": "2021-05-31T14:54:39.000Z", "title": "Weak Harnack inequality for a mixed local and nonlocal parabolic equation", "authors": [ "Prashanta Garain", "Juha Kinnunen" ], "comment": "27 pages", "categories": [ "math.AP" ], "abstract": "This article proves a weak Harnack inequality with a tail term for sign changing supersolutions of a mixed local and nonlocal parabolic equation. Our argument is purely analytic. It is based on energy estimates and the Moser iteration technique. Instead of the parabolic John-Nirenberg lemma, we adopt a lemma of Bombieri to the mixed local and nonlocal parabolic case. To this end, we prove an appropriate reverse H\\\"older inequality and a logarithmic estimate for weak supersolutions.", "revisions": [ { "version": "v1", "updated": "2021-05-31T14:54:39.000Z" } ], "analyses": { "subjects": [ "35R11", "35K05", "35B65", "47G20", "35D30" ], "keywords": [ "weak harnack inequality", "nonlocal parabolic equation", "mixed local", "nonlocal parabolic case", "parabolic john-nirenberg lemma" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }