{ "id": "2105.14169", "version": "v1", "published": "2021-05-29T01:17:58.000Z", "updated": "2021-05-29T01:17:58.000Z", "title": "Weak Bruhat interval modules of the 0-Hecke algebra", "authors": [ "Woo-Seok Jung", "Young-Hun Kim", "So-Yeon Lee", "Young-Tak Oh" ], "comment": "40 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "To each left weak Bruhat interval $[\\sigma,\\rho]_L$ we assign an $H_n(0)$-module $\\mathsf{B}(\\sigma,\\rho)$, called the weak Bruhat interval module associated to $[\\sigma,\\rho]_L$. The family of weak Bruhat interval modules contains many important $H_n(0)$-modules such as projective indecomposable modules, irreducible modules, and their induced modules. We study embedding problem, induction product, restriction, and (anti-)involution twists of these modules. And, we prove that various $H_n(0)$-modules arising from the context of the quasisymmetric characteristic are decomposed into indecomposable weak Bruhat interval modules.", "revisions": [ { "version": "v1", "updated": "2021-05-29T01:17:58.000Z" } ], "analyses": { "subjects": [ "20C08", "05E10", "05E05" ], "keywords": [ "weak bruhat interval modules contains", "left weak bruhat interval", "indecomposable weak bruhat interval modules", "induction product", "study embedding problem" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }