{ "id": "2105.12854", "version": "v1", "published": "2021-05-26T21:23:50.000Z", "updated": "2021-05-26T21:23:50.000Z", "title": "Joint distribution in residue classes of polynomial-like multiplicative functions", "authors": [ "Paul Pollack", "Akash Singha Roy" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "Under fairly general conditions, we show that families of integer-valued polynomial-like multiplicative functions are uniformly distributed in coprime residue classes mod $p$, where $p$ is a growing prime (or nearly prime) modulus. This can be seen as complementary to work of Narkiewicz, who obtained comprehensive results for fixed moduli.", "revisions": [ { "version": "v1", "updated": "2021-05-26T21:23:50.000Z" } ], "analyses": { "subjects": [ "11A25", "11N36", "11N64" ], "keywords": [ "joint distribution", "coprime residue classes mod", "fairly general conditions", "fixed moduli", "integer-valued polynomial-like multiplicative functions" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }