{ "id": "2105.12850", "version": "v1", "published": "2021-05-26T21:19:04.000Z", "updated": "2021-05-26T21:19:04.000Z", "title": "Distribution mod $p$ of Euler's totient and the sum of proper divisors", "authors": [ "Noah Lebowitz-Lockard", "Paul Pollack", "Akash Singha Roy" ], "comment": "24 pages", "categories": [ "math.NT" ], "abstract": "We consider the distribution in residue classes modulo primes $p$ of Euler's totient function $\\phi(n)$ and the sum-of-proper-divisors function $s(n):=\\sigma(n)-n$. We prove that the values $\\phi(n)$, for $n\\le x$, that are coprime to $p$ are asymptotically uniformly distributed among the $p-1$ coprime residue classes modulo $p$, uniformly for $5 \\le p \\le (\\log{x})^A$ (with $A$ fixed but arbitrary). We also show that the values of $s(n)$, for $n$ composite, are uniformly distributed among all $p$ residue classes modulo every $p\\le (\\log{x})^A$. These appear to be the first results of their kind where the modulus is allowed to grow substantially with $x$.", "revisions": [ { "version": "v1", "updated": "2021-05-26T21:19:04.000Z" } ], "analyses": { "subjects": [ "11A25", "11N36", "11N64" ], "keywords": [ "distribution mod", "proper divisors", "residue classes modulo primes", "coprime residue classes modulo", "eulers totient function" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }